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ABSTRACT 
 
It is well known that the exact and analytical theoretical solution of any physical tasks can be a powerful instrument for the 
analysis. But it is well known too, that in the general light transport and scattering theories, which are always used in 
different laser medical applications, there are only few exact and analytical approaches to solve the important modeling 
tasks. It can be shown that the conventional mathematic theory of the Markov processes can also provide some exact and 
analytical solutions for a number of practically important cases. As an example, in this report the analytical solution of 1-D 
pure scattering task with the use of the Markov processes formalism is presented. Some consequences of that for the 
general light scattering theory and for the noninvasive medical diagnostic problems are discussed as well. For instance, this 
solution can predict an enhanced value of the experimentally estimated transport scattering coefficient if the thin sample of 
biotissue is used. For the laser Doppler medical flowmetry in the case of a strong scattering media and a low level power of 
the laser our result can predict the appearing of additional spectra of the tissue’s output signal which can be wrong 
interpreted like a conventional Doppler spectrum.  
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1. INTRODUCTION 
 
The possibilities of the noninvasive laser and optic diagnostic technique in medicine are studied now very intensively1-5. 
Recently, in our previous research6-8, it was shown that the efficiency of noninvasive optical diagnostic equipment in main 
manner depends on the efficiency of its mathematical software, which must exactly resolve the inverse optical task of the 
light scattering media theory. In turn, the exactness of the inverse optical algorithms in main manner depends on the 
exactness of the direct algorithms calculating a scattered light distribution into the turbid medium and on its surface. So, for 
the effective development of the data processing software for noninvasive optical diagnostic systems it is necessary to have 
some effective approaches to resolve a direct optical task. The best way to have one is the searching an exact and analytical 
solution of the direct task. Moreover, it is well known fact that the exact theoretical solution of a modeling physical task 
can be the most powerful instrument for the further analysis of particularities of the investigated process. However, in the 
classical optics of scattering media9 there is the well-known opinion that only the “Milne’s approach” leads to the exact 
analytical solution in a number of particular cases. Recently papers10,11  presented some new ways to the analytical solution 
of the total scattering task. It can be shown that the conventional mathematic theory of the Markov processes can also 
provide some exact and simple analytical solutions for a number of practically important cases. And they, in turn, can 
provide some interesting consequences for the general light scattering theory and for noninvasive medical diagnostic 
problems as well.  
 

2. GENERAL THEORY 
 
An assumption of the separated photon migration phenomena in scattering media is now widely used in a lot of biomedical 
optic applications, especially in statistical Monte Carlo computer simulation. If this model is assumed then the probability 
of the photon location at any point “xi” of the space can be interpreted like a probability of the state of the Markov N-
section chain. In this case the magnitudes of the parameter “t” (time) in a function of conditional probability of transitions 
became quasi-discontinuous and the possibility to replace them by the test’s numbers “n” (or  “m”, “l”, etc.) appears. In 
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such approach the common probability of the photon transition - p(n,xk|l,xi) - from ”xi“ point to “xk” point obeys the general 
Markov equation12:   
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For the homogeneous Markov chain the probabilities of transitions using “s” steps (s=n-l) form a matrix of probabilities: 
 

                                                   (s)p ik≡),( ik xsxp ,                                                                      (2) 
 
where, in a conventional case, the sum of matrix’s elements is:  
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when N  is a total number of chain’s states which are taken into account. 

The equation (2) shows that the probabilities of transitions with the use of any “s” steps can be ultimately represented using 
only one-step probabilities. In fact, it reduces a solution of the Markov process task to forming one-step matrixes and 
making the formal multiplications of them.  
 
Let’s take into account, as an example, a simple 1-D task of the photon wandering into a system of “N” reflecting walls (see 
fig.1). Let’s consider the same coefficient of reflection – “R” – for each separate wall as well. Because of R≤1 it can be 
interpreted as a probability of the photon transition from one state to another when photon is reflected by wall. Whilst the 
probability of the opposite event for photon (crossing a wall) will be equal “1-R”. 
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Fig.1 The scheme of the investigated pure scattering medium. 

 
If we will find the total probability for the photon backscattering (or transmitting) by this layered medium then we will 
have a total amount of backscattered (transmitted) photons under real illumination, i.e. we will have a general solution of 
the investigated task. 
 
For the correct use of the Markov process’s mathematical formalism it is necessary to numerate all photon’s states in a 
model system. If the simplest numeration will be chosen: before all walls – the state number i=1, between first and second 
walls – the state number i=2, between second and third walls i=3, etc., then one could determine all one-step probabilities 
for photon migration. Excepting states i=1 and i=N+1 (after all walls), the transition from any “i” state to a state i=i+1 or 
i=i-1 has a probability “1-R”. The probability of staying in a state “i” is “R”. If photon goes out of the medium (i=1 or 
i=N+1) the probability of changing its state falls down to the zero (there isn’t any “back” process). But for this simplest 
numeration platform the Markov properties of a process are violated: the transition from “i” state to “i+1” or “i-1” state 
depends on a prehistory of the moving (was photon moved from left to right or from right to left). And the task can’t be 
resolved using Markov’s formalism. 
 
In our investigation we have considered much more useful numerating platform which allowed us, none the less, to reduce 
this task to the Markov process problem. The even numbers (i=2,4,6,…) were used for the numeration of the photon states 
between walls and out of the walls when photon had motions from right to left. The uneven numbers (i=1,3,5…) were used 
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when photon moved from left to right. Initial photons for that numeration platform had a state i=1, backscattered photons 
had a state i=2 and transmitted - i=2⋅N+1. Strictly speaking, on our numerating platform for the any even state “i” 
(excepting i=2) only states “i-1” or  “i-2” are permitted for transition with the probabilities “R” and “1-R” respectively. For 
any uneven state “i” (excepting i=2⋅N+1) the permitted states are “i+1” and “i+2” with the same probabilities “R” and “1-
R”. Any transitions from i=2 or i=2⋅N+1 states to any another states are not permitted (probabilities of transitions equal 
zero). After creating such statistical scheme of the task everyone can start a general determination. 
 
In instance, for the problem of the laser noninvasive medical diagnostics with the use of backscattered light to register 
diagnostic data the total probability PS(N) of the photon transition from the state i=1 to state i=2 through any “s” numbers 
of steps (s=1,2,…∞) is interesting for us as a function of a number of walls “N”. It means that we must find the unlimited 
sum: 
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where PS(N) is the total probability of the photon transition from the state i=1 to state i=2 through any “s” numbers of steps. 
The matrix of all one-step transitions “π1”, in instance for N=2, is a matrix 1)(Sp 2N

ik ==  with dimension 6x6: 
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The probabilities of reaching the state “i=2” from the state “i=1” with the use of any “s” steps can be calculated by 
multiplication of corresponding matrixes (5). For example, for N=2 the corresponding probabilities are: 
 

       s=1:        p12(1)=R; 
       s=2:        p12(2)=0; 
       s=3:        p12(3)=R(1-R)2; 
       s=4:        p12(4)=0; 
       s=5:        p12(5)=R3(1-R)2; 
       s=6:        p12(6)=0; 
       s=7:        p12(7)=R5(1-R)2 

                                                                    ………………………….. 
 
and the sum of them is the series: 
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Looking at (6) one can find that starting from the second item of the series there is, in (6), the trivial geometrical 
progression. So, the limit for (6) is trivial as well: 
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Taking into account layered medium systems with N=3,4,5…. it is easy to find that the general probability Ps(N) as a 
general solution of our task for the backscattered light is: 
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It must be mentioned that (8) is an exact and analytical solution for the pure scattering case and for a backscattered light. 
The backscattered flux (FBS) can be calculated from (8) as: 
 
                                                                            )(0 NPFF SBS ⋅= ,                                                                       (9) 
  
where F0 is the initial flux illuminating the turbid medium.  
 
For a transmitted light or for another medium scheme the same way of calculation can be easily used and the total 
analytical solution can be easily yielded as well.   
 
 

3. CONSEQUENCES 
 

The first and very interesting consequence of (8) for the total theory of light propagation in turbid media relates to the 
question of the right understanding of the transport scattering coefficient term in a general transport theory. The Kubelka-
Munk approach9 allows everyone to obtain an exact and analytical solution of the 1-D pure scattering task (without light 
absorption into a medium) as well. That gives the following formula for the backscattering flux for our 1-D scattering 
medium: 
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where: “S” is the transport scattering coefficient for this turbid medium and “H0” is the total thickness of the medium. 
When N>>1 from (8) and (10) one can yield the following relationship: 
 
                                                                               0/ HNRS =  .                                                                                (11) 
 
So, the transport scattering coefficient is an effective and generalizing parameter of the task describing a radiance scattering 
by a total volume of the medium and depending on a total medium thickness in that number. Therefore, it can be proposed 
from (11), that the measurements of optical transport parameters “S” for different biological tissues when the different 
samples of tissues with the different thickness are used (the conventional laboratory technology) must give different results 
if inhomogeneties of the medium are distributed in it not quite uniform. This consequence is indirect confirmed by a lot of 
reports concerning the real optical properties of biological tissues estimated by the experimental study13. Moreover, we can 
predict now, that the less H0 of the sample is used the more magnitude of  “S “could be obtained from the experimental 
data. And vice versa. So for in vivo measurements in real clinical practice the optical scattering coefficient for a real skin 
can be less, than one for a thin sample of the skin. 
 
The second interesting consequence is situated in the noninvasive laser Doppler flowmetry field. The presented equation 
(8) was yielded with the use of assumption of the possibility of innumerable photon migration steps “s” and innumerable 
amount of initial photons. That is correct for the infinite time of the signal registration and very big initial power of laser 
radiation only. If the power of light source is limited and a photodetector has a limited time response then the detected 
amount of photons will be different from sampling to sampling because of a stochastic nature of the migration process. It 
will cause of amplitude modulation of the measured photocurrent that, in instance, for the laser Doppler flowmetry 
equipment can be interpreted like an additional spectra of the tissue’s output signals or a “false” Doppler spectrum namely. 
So, only the strong scattering properties of tissues can be reason of the “Doppler” spectra in noninvasive flowmetry 
technology. Particularly it is good confirmed by remarks of the existence of a “biological zero phenomenon” in the laser 
Doppler diagnostic technique14.  

 
 

4. CONCLUSION 
 

It is well known that the exact and analytical theoretical solution of any physical task can be a powerful instrument for the 
analysis. But it is well known too, that in general light transport and scattering theories, which are always used in the laser 
medical applications (especially noninvasive diagnostic applications), there are only a few exact and analytical approaches. 
That is why the analytical analysis of the majority of practically important cases of the laser light interaction with biotissues 
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is today very difficult. It was shown in this report, that the Markov processes mathematical theory could be a useful 
instrument to obtain some exact solutions of the photon stochastic migration task. For example, presented simple solution 
for a pure scattering 1-D process allows researcher to estimate more correct physical means of the used transport 
coefficients in the transport theory, especially of the scattering transport coefficient, that is important for the way of looking 
for an exact approaches to resolve a direct optical task in the laser medical application field.  

 
For instance, this solution can predict an enhanced value of the experimental estimated transport scattering coefficient if the 
thin sample of biotissue is used. For the laser Doppler medical flowmetry in the case of a strong scattering media and a low 
level power of the laser our result can predict the appearing of additional spectra into the tissue’s output signal which can 
be wrong interpreted like a conventional Doppler spectrum.  
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