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Abstract - On the base of the generally improved Kubelka-Munk approach what now allows to 
obtain exact solutions for backscattered and transmitted fluxes on external boundaries of a turbid 
medium in a one-dimensional theoretical problem some main definitions of optical properties of 
turbid media have been revised. It is proved by numerical calculations that the more light 
absorption is presented in the scattering medium the more incorrect values can be obtained for 
transport optical properties using the classical approach. The article proposes new strict definitions 
of the transport scattering and absorption coefficients as well and shows that it is more logically to 
distinguish along with them still factors like a transport attenuation coefficient (AC) and a transport 
backscattering coefficient (BC). The ratio BC/AC defines exactly the albedo of the turbid medium.     
 

1. INTRODUCTION 

Kubelka-Munk (KM) two-flux transport one-dimensional (1D) model is the most widely used Radiation 
Transport Theory (RTT) approach in a modern optics of turbid media because of its simplicity and existence of a 
clear and analytical solution of initial differential equation in it [1, 2]. Moreover, the KM approach is the best 
and the simplest approximation of the general Radiative Transport Equation (RTE) in the case of 1D theoretical 
problems [3]. But it is well-known from the literature that the KM model doesn’t allow to obtain an exact 
solution, especially for highly-absorbing and weakly-scattering media [3, 4]. In most of publications it is 
assumed that light must be diffuse on a surface as well as within the medium for a correct application of the KM 
equations. As the main consequence of quite simultaneously and probably independently appeared publications 
[5, 6] in the case of diffuse light distribution there is a totally accepted opinion that the ratios between transport 
optical properties of KM approach (K and S) and corresponding transport optical properties of general RTE (µa 
and µs) can be written, for example [6], as : 

aK µ2≈   ;     asS µµ −=
4
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Herein, if the second equation (1) needs  
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what is usually explained like a necessary consequence of highly-scattering and diffuse scattering conditions, the 
first equation of (1) in the case of small scattering looks more dramatically for doesn’t contains any dependences 
on µs. In a case of µs→0 both KM and RTT equations became identical and have an exponential attenuation of 
light intensities as a solution of equations. These analytical-precise two solutions cannot differ in two times, so, 
ether K=µa all time and the first equation of (1) is wrong or K is unknown function of µs when if µs=0 then K=µa 
but if µs≠0 then K aspires to (1) under µs>>µa.   

All these and some other deficiencies of a classic KM approach were a source of inexhaustible attempts to 
improve a physical interpretation and an accuracy of the classic KM approach all time during last 50 years [7-9]. 
Recently it was shown [10-12] that the main problem of the KM as well as of the general RTE approaches 
consists in a wrong phenomenological assumption of the existence of two independent optical transport 
properties of turbid media - absorption and scattering. In the general case of a turbid medium, where the 
absorption of light is presented, the first coefficient in the right side of both RTE and KM equations cannot be 
separated into the two independent transport coefficients - absorption and scattering (K and S in the KM 



notations; µa and µs in the RTE notations) - and must be considered as one, united attenuation coefficient “β1”. 
The absorption transport property K (or µa in RTE notations) is included into β1 as well as into the second 
coefficient of initial differential equations “β2”, but not additively. Without absorption K=0 and β1=β2=S; 
without scattering S=0, β2=0 and β1=K, like it must be in the classical theory. But if both an absorption and 
scattering phenomena are presented together, then the classical phenomenological assumption β1=K+S=K+β2 is 
wrong. Only if the absorption existed in a medium is small, much less than the scattering, then the classical 
assumption can take place. 

Thus, the generally improved two-flux KM approach shows to us that there are in the RTT a number of 
incorrect-understandable definitions of transport optical properties of turbid media. For example, - the definition 
of the scattering properties of the medium or the definition of albedo (W0) of that. The latter is frequently 
understood as the ratio W0=β2/β1=S/(K+S) [3], but as it has been shown [10, 11] in the general case of 1D task 
β2/β1≠S/(K+S). So in this work we have studied more detailed a difference between classic and improved values 
for transport coefficients and terms mentioned above.  

 

2. CLASIC AND GENERAL IMPROVED TWO-FLUX KUBELKA-MUNK APPROACH  

The original (classic) two-flux KM model is a well-known approach with two fluxes F+(x) and F_(x) of light 
traveling in a turbid medium in forward and backward directions. The optical properties of the medium are 
described by transport absorption (K) and scattering (S) coefficients. Initial KM differential equations describing 
the radiant energy balance on dx of the medium are: 
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System (1) has an exact and analytic-mathematical solution: 
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where: C1 and C2 are the constants of integrating; )2( SKK +=α ; )2/()2( αα −+++=+ SKSKA ;  

+− = AA /1 . Usually for various practical applications it is interesting to find a backscattered flux Fbs= F_(0) or 
a transmitted one Fτ= F+(H0), where H0 is the thickness of the medium. 

The generally improved two-flux KM approach differs from the system (2) in its coefficients of equations: 
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Moreover, as it has been shown in ref. [10, 11] in the general case of the problem for the system (4) these 
coefficients have much more complicated forms, counterbalancing (2): 
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and in the solution (3) 2
2

2
1 ββα −= , where µρ is a transport density of optical heterogeneities in the medium 

per length “dx” and R is a coefficient of reflection on boundaries of the heterogeneities (in a 1D problem there is 



a single physical phenomenon only – the reflection - to change the direction of light propagating in the medium). 
What is important else: the results (5)-(7) are valid both for highly and weakly-scattering media.  

As anyone can see now in a common case we can’t write directly 21 βµβ += ak where k is any constant, 
because as it follows from (5) and (6): 

                                                                                 
2

/

1 βωβ
ρµµ

⋅
⋅

=
R

e a
   .                                                                    (8) 

Nevertheless, there are in the theory a number of more simplified cases which could be considered as limits 
of equations (5)-(7) when the transport optical properties could be written more closely to classical definitions. 
For example, in the case of K=0 and multiple scattering it was shown [10] that  

                                                                                 
R

R
−

==
121

ρµββ ,                                                                           (9) 

what could be accepted like a transport scattering coefficient “Sm” in a perfect multiple scattering 1D problem. 
But in the case of a small diffusing when an approximation of the single scattering is applied [12]: 
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where the division of the coefficients β1 and β2 into two classical transport optical properties K and S is not so 
obviously. And, definitely, equations (1) contradict to the exact and new general results (5)-(8).  

 
3. REDEFINITION OF OPTICAL PROPERTIES OF TURBID MEDIA  

To have a clear idea about transport optical properties of turbid media in a light of our results (5)-(8) anyone now 
has to decide what to consider as the absorption transport coefficient of the medium and the scattering one? 
There are a number of opportunities, for instance [10]: 

1.                                                           aK µ=        and         .
1 R
R

S sm −
== ρµµ                                                        (11)    

These definitions are more natural in both cases of perfect absorption and perfect scattering because of the 
existence of corresponding limits of (5) and (6). For example, in the case of µρ→0 (or R→0) ⇒ β2→0 and 
β1→µa (the perfect absorption), as well as in the case of µa→0 (perfect scattering) there is the solution (9) [12]. 

2.                                                      aK µ=      and      )1ln( RS S −⋅−== ρµµ                                               (12) 

In this case under the single scattering approximation β1=K+S what follows from first equation (10), but β2≠S. 

3.                                                          aK µ=  ;   S=β2    but   β1≠K+S ,   etc. 
It has to be special noted that in the system (4) there is one more optical parameter J=β1/β2=const≥1 which is 
important and could be numerical determined from eq. (8). In ref. [13] it had been defined as one of the 
photometrical invariants. However, in the light of our problem if we suppose the albedo W0=β2/β1, then W0=1/J 
and the albedo is the simplest inverse quantity to this Gershun-Gurevich Invariant.   

In our opinion, more logically is to have definitions of transport optical properties in the forms (11) or (12). 
Additional optical coefficients – coefficients of initial transport differential equations (4) – could be called like 
the transport attenuation coefficient (β1) and the transport coefficient of a backscattering (β2). At last the albedo 
we’d suggest to name W0=β2/β1=1/J, refusing classical β1=K+S as well as S=β2 and W0=S/(K+S).  

 

4. NUMERICAL EXAMPLES AND RATIOS  

To understand better some differences in numerical values of various definitions of transport optical properties of 
turbid media we have calculated their ratios for different sets of parameters R, µa and µρ. The results are shown 



in Fig. 1 and 2. Evidently, the presence of absorption in the medium (µa≠0) leads to difference between classical 
results and exact new ones. The more µa exists in the medium the more errors we can see in the classical 
calculations and definitions. 

.                                                   a)                                                                                                b)                                                                     . 

. 

                                                     c)                                                                                              d) 
Figure 1. Differences in transport optical properties under different definitions of them. 
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Figure 2. Differences in numerical values of different meanings of albedo.  

W0=Sm/(µa+Sm);  W0*=β2/β1;  W0’= β2/(µa+β2). 
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5. DISCUSSION AND CONCLUSION 

In our opinion, we have obtained quite interesting results, especially equations (5)-(8). They show that in the 
classical RTT there are a number of problems when we can’t separate easily the absorption and scattering 
transport coefficients. Such separation and the theoretical independence of K on S in the classical RTT is a 
simple consequence of the accepted radiant-energy balance formalism in the elementary volume of the scattering 
medium. But in a number of cases, for our 1D model in instance, both absorption and scattering processes are 
not independent. Moreover, our results come into operation the so-called in photometry (and today quite 
forgotten) Gershun-Gurevich Invariant [10, 13]: 
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where F0 is an external illuminating flux. All of these reasons insist on a redefinition of some transport optical 
properties of turbid media in the RTT. If to have a look at figures 1 and 2 then it becomes evidently that classical 
formulas are not correct in the case of nonzero absorption. The more µa exists in the medium the more errors we 
can obtain in classical calculations. So, to have more physically understandable results it is necessary to redefine 
some transport optical properties in the classical RTT. Now we can propose and try to prove our vision of the 
problem. According to that we have suggested some new definitions for transport optical properties of turbid 
media. In our opinion, it is more logically to have definitions of transport optical properties in the forms (11) or 
(12). Additional optical coefficients – coefficients of initial transport differential equations (4) – could be called 
as a transport attenuation coefficient (β1) and a transport coefficient of backscattering (β2). At last the albedo 
we’d like to propose to name W0=β2/β1=1/J, refusing classical β1=K+S as well as S=β2 and W0=S/(K+S). 
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