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Abstract - Using examples of 1D and 2D pure scattering 

problems and a single-scattering approximation, the paper 

considers the derivation of expressions for the scattering 

coefficient and the phase scattering function for a continuous 

medium as the limiting case of scattering on a group of discrete 

scatterers. It is shown that the use of this approach to construct 

the cumulative distribution function (CDF), which serves to 

simulate the scattering angle at numerical Monte Carlo 

simulations, leads to the dependence of CDF only on the 

normalized scattering phase function of a single scatterer.  
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Since there is no exact analytical solution of the transport 
equation, its various approximations, as well as the Monte 
Carlo (MC) numerical computational method, are actively 
used for theoretical investigations of light transport in turbid 
(scattering) media, biological tissues and media for example. 
Main scattering elements in a biological tissue are the cells 
membranes, nuclear membranes and other discrete optical 
inhomogeneities inside light-absorbing substances. At the 
same time, both the light transport theory and the MC 
numerical method operate with continuous media, the optical 
properties of which should be determined as specific 
characteristics per a length of a light-beam path.  

At MC simulations, it is common to use such optical 
characteristics of the medium as the refractive index n, 
absorption and scattering coefficients μa and μs, and the 
scattering phase function (SPF) ρ at a single scattering event. 
With the help of n, the refraction and reflection at boundaries 
between different turbid media with different optical 
properties are usually taken into account. Coefficients μa and 
μs determine dissipation (absorption and scattering) of 
radiation inside the medium of light propagation, while SPF 
ρ determines angular (spatial) distribution of the scattered 
radiation. In fact, parameters μa and μs are the specific 
characteristics of the infinitesimal element dl of the beam 
path length in the medium, which have a dimension of a 
reciprocal length [сm-1]. At MC simulations, these 
coefficients are commonly used to sample both the path 
length l for every step of simulations of the photon 
propagation inside the medium, and the scattering probability 
Ps for the photon at the end of l. In particular, in the classical 
MC approach it is accepted:  

 𝑙 = −
𝑙𝑛𝜉

𝜇𝑎+𝜇𝑠
 ;     𝑃𝑠 =

𝜇𝑠

𝜇𝑎+𝜇𝑠
, 

where ξ is a random number within the interval [0;1]. 

Such “point” MC calculations look similar to the problem 
of discrete scatterers, scattering on particles, for example [1]. 
However, contrary to the classic theory [2], in [3], it was 
recently shown that for a group of discrete scatterers, μs is 
not equal to a multiplication of the density of scatterers μρ 
and the integral scattering characteristic of a single scatterer 
– a reflectivity R. This difference leads to inaccuracies in MC
algorithms for scattering and absorbing media right starting 
from the one-dimensional (1D) problems [4]. The cause is 
that the path length and the scattering probability (1) were 
derived under the assumption that absorption and scattering 
processes are independent, which is not correct in the general 
case [5]. Therefore, as a continuation of the study, the aim of 
this paper is to study how to derive correctly a closed-form 
expression for SPF Φ for scattering and non-absorbing 
continuous media as the limit case of the discrete scatterers 
problem.  

Initially, we start with the reproduction of the approach 
implemented in [3] that describes the algorithm to derive a 
scattering coefficient μs for a continuous 1D turbid medium 
from the density of scatterers μρ and the scattering 
characteristics of a single scatterer – a Fresnel reflectivity R. 
The approach can be conveniently shown by the example of 
a semi-infinite 1D medium without absorption using the 
single scattering approximation (SSA). It gives the simplest 
solution of the 1D scattering problem. SSA assumes 
scattering (more exactly – the back reflection in the 1D case) 
for the forward flus F+(x) on each inhomogeneity and the 
absence of scattering for the backward flux F-(x), i.e. it 
assumes the negligible rereflection process between any two 
heterogeneities inside the medium.  

Assume that an external beam of light (flux) F0 enters the 
1D medium from the left side at the point x = 0 (Fig. 1). 
Define X as the axis of the direction of the light beam 
propagation inside the medium. 

In the case of 1D pure scattering media, there are only a 
few physical properties of the media – a number of scatterers 
distributed along the X-axis inside the medium with the 
density μρ, and the reflectivity Ri for each i-th scatterer. Due 



Fig. 1. Outline of the 1D scattering problem without absorption 

illustrating the structure of the interval Δx. The formation of transmitted 

and backscattered fluxes is shown through the example of the second 

scatterer at Δx. 

Fig. 2. Outline of the 2D scattering problem without absorption illustrating 

the structure of the interval Δx and formation of the scattered flux. 

to the absence of absorption, distances between scatterers 
play no role. Assume all Ri = const ≡ R. For a formation of 
the scattering coefficient, the difference between them does 
not matter. To derive differential equations for forward F+(x) 
and backward fluxes F-(x), one need to describe a decrement 
of the fluxes on dx.   

A number of scatterers N inside ∆x by a definition is: 

 𝑁 = 𝜇𝜌∆𝑥. 

In addition, by a definition, the derivative for F+(x) is 


𝑑𝐹+(𝑥)

𝑑𝑥
= lim

∆𝑥→0

∆𝐹+(𝑥)

∆𝑥
= lim

∆𝑥→0

𝐹+(𝑥+∆𝑥)−𝐹+(𝑥)

∆𝑥
. 

Considering partial reflection from each heterogeneity at 
a point x as R∙F+ (x), one can write for F+ (x+∆x): 

 𝐹+(𝑥 + ∆𝑥) = 𝐹+(𝑥)(1 − 𝑅)𝑁. 

Then, (3) comes to 


𝑑𝐹+(𝑥)

𝑑𝑥
= 𝐹+(𝑥) lim

∆𝑥→0

(1−𝑅)𝑁−1

∆𝑥
. 

Finally, taking into account (2), we come to the well-
known differential equation for F+(x): 


𝑑𝐹+(𝑥)

𝑑𝑥
= −𝜇𝑠𝐹+(𝑥), 

where 

 𝜇𝑠 = −𝜇𝜌 ln(1 − 𝑅).   

Note, that at SSA for 2D and 3D similar theoretical 
problems, (7) will retain its form, since the absorption and 
scattering coefficients describe the processes occurring along 
the light beam propagation path and, strictly speaking, are 
just the 1D specific quantities. 

Along with (6) for the forward flux F+(x), one can derive 
the similar equation for F- (x): 


𝑑𝐹−(𝑥)

𝑑𝑥
= −𝜇𝑠𝐹+(𝑥), 

Thus, when going to a continuous medium, the parameter 
of scattering, which characterize the scattering process in 
continuous interval dx, becomes the specific value in the 
form of μs ≠ μρ∙R.  

Despite the fact that in classic MC algorithms for a turbid 
continuous medium, the specific characteristics μa and μs are 
used to account scattering and absorption, the definition of a 
new scattering angle is usually carried out with the use of 
SPF ρ of a single “point” scatterer. As far as we know, the 
reason for the usage of SPF ρ for continuous media is not 
explained in details anywhere. However, MC simulations 
with the use of ρ turns out to be quite accurate. It means that 
this approach should be very close to the truth.  

Phenomenologically, by analogy with μa and μs, the 
specific SPF Φ of the infinitesimal element dx of the beam 
path length in continuous media should exist. Let us try to 
derive a rigorous equation for it with the use of the above 
stated approach. 

For simplicity, we will consider the same pure scattering 
problem at SSA. However, any angle scattering leads to at 
least 2D scattering problem for the pencil-like illuminating 
beam F0 (Fig. 2). Usually, the final goal of such task is to 
find the flux backscattered by the medium through the 
“window” (detector) of a width wy located at the Y-axis 
(similar problem with absorption was considered in detail 
and solved in [6]), or the flux scattered forward through the 
similar window in the direction of the beam propagation. 

The system of differential equations for this problem is 
the system (9) [6]. The first equation for the forward flux 
F+(x) still remains in the form of (6). The second one 
describes angular distribution of the flux Fs(x,θ) scattered on 
the element dx. 

 {

𝑑𝐹+(𝑥)

𝑑𝑥
= −𝜇𝑠𝐹+(𝑥) 

𝜕2𝐹𝑠(𝑥,𝜃)

𝜕𝜃∙𝜕𝑥
= −𝛽2

+(𝜃)𝐹+(𝑥)
,   

where 𝛽2
+(𝜃) is the side-scattering coefficient [rad-1cm-1]

that includes the single scatterer’s SPF ρ(θ), and θ is the 
angle between the direction of the forward flux propagation 
and a new direction after the scattering event. The closed 
analytical form of 𝛽2

+(𝜃)  must be phenomenologically
determined by how the flux F+(x) transforms within the 
element dx. 

Formally, the system (9) must contain one more equation 
– an equation for the radiance propagating back to the
medium’s boundary (Y-axis) in the direction specified by the 
angle θ. However, since the pure scattering model considers 
light propagation inside the non-absorbing medium, as well 
as SSA considers scattering once along X-axis only, the 



radiance will not change along its path, and there is no need 
in the third equation. 

Since the scattered flux in this 2D problem, as well as in 
the above 1D case, is formed only by the scattered fraction of 
the forward flux, and there is no absorption inside dx, we can 
write the following equation at any point x: 

 ∫ 𝛽2
+(𝜃)𝐹+(𝑥)𝑑𝜃

2𝜋

0
= 𝜇𝑠𝐹+(𝑥),   

and, therefore: 

 ∫ 𝛽2
+(𝜃)𝑑𝜃

2𝜋

0
= 𝜇𝑠,   

which serves as a certain condition when choosing a 
coefficient 𝛽2

+(𝜃). 

The single scatterer’s 2D SPF ρ(θ) should not be a 
function of the coordinates x, because all single scatterers in 
our model are assumed to be equal. In the classic photometry 
for a point scatterer, ρ(θ) is determined by the flux F0 
incident on the scatterer and by the radiant intensity of the 
scattered radiation I(θ) as follows [7]:  

 𝜌(𝜃) =
𝐼(𝜃)

𝐹0
.   

In our case, it yields: 

 𝜌(𝜃) =
𝐼(𝜃,𝑥)

𝐹+(𝑥)
,   

which has a dimension [rad-1].  

In Fig. 2, the structure of the element ∆x is the same as in 
the Fig. 1 for the 1D case. The difference is that in the 
current problem each scatterer has not only the reflectivity Ri 
but also SPF ρ(θ). Using R, we consider nonperfect scatterer 
(not all incident radiation is scattered), therefore the 
normalization condition for ρ(θ) takes place: 

 ∫ 𝜌(𝜃)𝑑𝜃
2𝜋

0
= 𝑅. 

According to (13), dx “generates” (see Fig. 2) a series of 
radiant intensities Ii(θ,x), which can be used for 
determination of 2D SPF Φ(x,θ) for continuous dx. For this 
purpose, first, we will find the sum of these radiant 
intensities scattered by all scatterers inside ∆x in the direction 
specified by θ. For the first scatterer, the radiant intensity can 
be written as follows: 

 𝐼1(𝜃, 𝑥) = 𝐹+(𝑥)𝜌(𝜃).   

For the second one,  

 𝐼2(𝜃, 𝑥) = 𝐹+(𝑥)(1 − 𝑅)𝜌(𝜃).   

For the N-th scatterer,

 𝐼𝑁(𝜃, 𝑥) = 𝐹+(𝑥)(1 − 𝑅)𝑁−1𝜌(𝜃).   

The sum of all these radiant intensities can be obtained 
using the expression for the sum of N terms of a geometrical 
progression: 

 ∑ 𝐼𝑖(𝜃, 𝑥)𝑁
𝑖=1 = 𝐹+(𝑥)𝜌(𝜃) 

1−(1−𝑅)𝑁

1−(1−𝑅)
.   

With the use of (7), the limit of the ratio of the sum (18) 
to ∆x at ∆x→0 gives: 

 lim
∆𝑥→0

∑ 𝐼𝑖(𝜃,𝑥)𝑁
𝑖=1

Δ𝑥
= 𝛽2

+(𝜃)𝐹+(𝑥),   

where  

 𝛽2
+(𝜃) = 𝜌(𝜃)

𝜇𝑠

1−𝑒
−

𝜇𝑠
𝜇𝜌

.   

We should note that the consideration of a flux 
transformation in the way of (15-18) results in 𝛽2

+(𝜃) that 
meets the condition (11). This can talk of a correctness of 
such a consideration. 

On the other hand, note that by definition [8],  

 lim
∆𝑥→0

∆𝐼(𝜃,𝑥)

Δ𝑥
= 𝐿(𝜃, 𝑥) ∙ cos (𝜃 −

𝜋

2
),   

where L(θ,x) is the 2D radiance [Wrad-1cm-1], and θ – 
π/2 = α is an angle between the normal n to the element dx at 
the point (x,0) and the observation direction specified by θ 
(Fig. 2). Thus, the radiance serves as a specific characteristic 
of scattering in a continuous medium. 

Now, following the classic approach (for example, (12) 
or (13)), we can define the SPF Φ(θ) for a continuous 
medium as: 

 Φ(𝜃) =
1

𝐹+(𝑥)
𝐿(𝜃, 𝑥) ∙ sin (𝜃),  

taking into account that cos (𝜃 −
𝜋

2
) = sin(𝜃). 

Or, looking at (9), one can write: 

 Φ(𝑥, 𝜃) = −
1

𝐹+(𝑥)
∙

𝜕2𝐹𝑠(𝑥,𝜃)

𝜕𝜃𝜕𝑥
.   

 We must notice that the similar expression for 3D SPF is 
given in [8] and referred there as a volume scattering 
function (or just a scattering indicatrix).  

With the use of (7), (19), (20), (21) and (22) it yields the 
SPF for non-absorbing 2D continuous media in the form: 

 Φ(𝜃) ≡ 𝛽2
+(𝜃).   

Thus, in our model the side-scattering coefficient 𝛽2
+(𝜃) 

can be considered as SPF of a continuous medium that turns 
out to be similar for every point of X-axis for the isotropic 
scattering medium. 

For MC simulations, it is necessary to know the 

cumulative distribution function (CDF) D () that serves for 

modeling the scattering angle θ ( is a random number within 

the range [0; 2]). Let us build CDF basing on the SPF Φ(θ). 

The function 

 𝑆(𝜃) =
∫ Φ(𝜃′)𝑑𝜃′𝜃

0

∫ Φ(𝜃′)𝑑𝜃′2𝜋
0

   



Fig. 2. Dependences of Fbs(y0) on y0 at different μρ  calculated using 

(30) (solid lines) and MC (dashed lines). The logarithmic scale is used 

along the ordinate axis. The parameters: R = 0.2, wy = 0.02 cm, ρ(θ) = 

R/2π. The number of incident photons used in MC is 107.  

0,0 0,1 0,2 0,3 0,4 0,5

10
-4

10
-3

10
-2

10
-1



 = 10 cm

-1
  

s
 = 2.23 cm

-1
 



 = 100 cm

-1
 

(
s
 = 22.31 cm

-1
) 

B
a
c
k
s
c
a

tt
e
re

d
 f

lu
x
, 

F
b
s
(y

0
),

 f
ra

c
ti
o

n
 o

f 
F

0

Source-detector separation, y
0
, cm



 = 400 cm

-1
 (

s
 = 89.26 cm

-1
) 

determines the fraction of the radiation scattered in the 

angle range [0; ]. 

Let us directly map ranges of the definition of the 

function S(θ) and CDF D () making a model:  

 𝑆(𝜃) = 𝐷𝜃(𝜀).   

Since ∫ 𝛽2
+(𝜃)𝑑𝜃′2𝜋

0
= 𝜇𝑠, (26) results in the expression

for CDF: 

 𝐷𝜃(𝜀) =
1

𝜇𝑠
∫ 𝛽2

+(𝜃)𝑑𝜃
𝑘𝜃𝜀

0
, 

where values kθ∙ε linearly map the values of θ, because 
the angle θ itself cannot be treated as a random variable. 
Therefore, the constant kθ has the magnitude of 1 rad.  

After this, the angle θ can be sampled by the equation 

 𝜃 = 𝑘𝜃𝐷𝜃
−1(𝜉), 

where 𝐷𝜃
−1(𝜉) is the inverse function to D (), ξ is a

random number uniformly distributed within the range [0;1] 
and sampled by a computer. When modeling, the constant kθ 
can be ignored.  

Finally, for the solution of the problem and constructing 
the corresponding MC model, we need to determine the 
coefficient 𝛽2

+(𝜃) in the explicit form like (20).

In [6], it was shown that independently of which 𝛽2
+(𝜃)

is chosen (being subject to only condition ∫ 𝛽2
+(𝜃)𝑑𝜃

2𝜋

0
≤

𝜇𝑠 at SSA), the result of MC simulations always coincides
with the analytical solution, as the parameters of the MC 
model cannot be constructed without the knowledge of this 
analytical solution. Within this context, the ability of MC 
simulations to serve us as a reference method to check the 
correctness of one analytical model or another comes into a 
question. 

From (20) and (24) one can see that Φ(θ) is determined 
not only by SPF of a single scatterer but also by the 
scattering coefficient μs and the reflectivity R. 

For the case of SSA and non-absorbing media, (27) for 
CDF of the scattering angle using (7) and (20) comes to 

 𝐷𝜃(𝜀) =
1

𝑅
∫ 𝜌(𝜃)𝑑𝜃

𝑘𝜃𝜀

0
. 

It can be seen from (29) that the scattering angle sampled 
from (28) is determined only by single scatterer’s SPF ρ(θ) 
and R. Thus, the use of SPF of a continuous medium Φ(θ) 
results in the conventional method of sampling the scattering 
angle.  

Knowing 𝛽2
+(𝜃) , one can obtain the strict analytical

solution of the problem, namely, the backscattered flux left 
the medium through the window of width wy centered at the 
point (0,y0). Taking into consideration the window 
boundaries y1 = y0 – wy/2 and y2 = y0 + wy/2 ≥ 0, as well as the 

equation x = – y/tg, one comes to the desired backscattered 
flux: 

 𝐹𝑏𝑠(𝑦0) = 𝐹0
1

1−exp(−𝜇𝑠 𝜇𝜌⁄ )
∫ 𝜌(𝜃)[exp (𝜇𝑠𝑦1 tan 𝜃⁄ ) −

𝜋
𝜋

2

exp (𝜇𝑠𝑦2 tan 𝜃⁄ )] 𝑑𝜃. 

The function Fbs(y0) for the case of isotropic scattering 
ρ(θ) = R/2π, with the reflectivity R = 0.2 at the window width 
wy = 0.02 cm and various scatterer densities μρ (which results 
in various μs) is plotted in Fig. 3. Also, results of the 
corresponding MC simulations conducted with the use of 
(29) for CDF and the path length l = -lnξ/ μs are presented 
there. One can see no visible differences in these results. 

Nevertheless, for a common case of the medium with 
absorption and multiple scattering, the problem of the 
derivation of Φ(θ) is opened yet. Here, we considered the 
SSA and the pure scattering approach only. It is far from the 
real world; therefore, several next steps of the study should 
be executed.  
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